22116116

CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Monday 9 May 2011 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1. What is the total number of hydrogen atoms in 1.0 mol of benzamide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$?
A. 7
B. 6.0×10^{23}
C. 3.0×10^{24}
D. 4.2×10^{24}
2. What is the sum of the coefficients for the equation when balanced using the smallest possible whole numbers?

$$
\ldots \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow _\mathrm{NO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A. 5
B. 6
C. 7
D. 8
3. Chloroethene, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$, reacts with oxygen according to the equation below.

$$
2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g})
$$

What is the amount, in mol, of $\mathrm{H}_{2} \mathrm{O}$ produced when 10.0 mol of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and 10.0 mol of O_{2} are mixed together, and the above reaction goes to completion?
A. 4.00
B. 8.00
C. 10.0
D. 20.0
4. A fixed mass of gas has a certain volume at a temperature of $50^{\circ} \mathrm{C}$. What temperature is required to double its volume while keeping the pressure constant?
A. 100 K
B. 323 K
C. $\quad 373 \mathrm{~K}$
D. 646 K
5. What is the concentration of NaCl , in moldm^{-3}, when $10.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{moldm}^{-3} \mathrm{NaCl}$ solution is added to $30.0 \mathrm{~cm}^{3}$ of $0.600 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution?
A. 0.450
B. 0.300
C. 0.500
D. 0.800
6. Which statements about the isotopes of chlorine, ${ }_{17}^{35} \mathrm{Cl}$ and ${ }_{17}^{37} \mathrm{Cl}$, are correct?
I. They have the same chemical properties.
II. They have the same atomic number.
III. They have the same physical properties.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
7. In the emission spectrum of hydrogen, which electronic transition would produce a line in the visible region of the electromagnetic spectrum?
A. $n=2 \rightarrow n=1$
B. $n=3 \rightarrow n=2$
C. $n=2 \rightarrow n=3$
D. $n=\infty \rightarrow n=1$
8. Which change explains why the boiling points of the halogens increase as their molecular masses increase?
A. The intermolecular attraction due to temporarily induced dipoles increases.
B. The gravitational attraction between molecules increases.
C. The polarity of the bond within the molecule increases.
D. The strength of the bond within the molecule increases.
9. Which pair of elements has the greatest difference in electronegativity?
A. Cs and F
B. Cs and Cl
C. Cs and Br
D. Cs and I
10. Which molecule has a non-bonding (lone) pair of electrons on the central atom?
A. BF_{3}
B. SO_{2}
C. CO_{2}
D. SiF_{4}
11. When $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are arranged in order of increasing carbon-carbon bond strength (weakest bond first), what is the correct order?
A. $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$
12. The number of electrons in the valence shell of elements A and B, are 6 and 7 respectively. What is the formula and type of bonding in a compound formed by these elements?
A. $A_{2} B$, covalent
B. AB_{2}, covalent
C. $\quad \mathrm{A}_{2} \mathrm{~B}$, ionic
D. AB_{2}, ionic
13. Lewis structures are represented in different ways in different parts of the world. Two ways of drawing the Lewis structure for $\mathrm{H}_{3} \mathrm{O}^{+}$are shown below.

Which statement is correct about $\mathrm{H}_{3} \mathrm{O}^{+}$?
A. The ion has a tetrahedral shape.
B. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle is 120°.
C. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle is 90°.
D. The ion has a trigonal pyramidal shape.
14. Which particles are responsible for the conduction of electricity in molten aluminium?
A. Cations
B. Anions
C. Electrons
D. Protons
15. Which processes have a negative enthalpy change?
I. $\quad 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
II. $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
III. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16. Consider the following reactions.

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta H^{\ominus}=+180 \mathrm{~kJ} \\
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=+112 \mathrm{~kJ}
\end{array}
$$

What is the ΔH^{\ominus} value, in kJ , for the following reaction?

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A. $-1 \times(+180)+-1 \times(+112)$
B. $-1 \times(+180)+1 \times(+112)$
C. $1 \times(+180)+-1 \times(+112)$
D. $1 \times(+180)+1 \times(+112)$
17. At $25^{\circ} \mathrm{C}, 200 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid is added to 5.0 g of magnesium powder. If the experiment is repeated using the same mass of magnesium powder, which conditions will result in the same initial reaction rate?
A.

Volume of $\mathbf{H N O}_{3} / \mathbf{c m}^{\mathbf{3}}$	Concentration of $\mathbf{H N O}_{3} / \mathbf{m o l ~ d m}^{-3}$	Temperature $/{ }^{\circ} \mathrm{C}$
200	2.0	25
200	1.0	50
100	2.0	25
100	1.0	25

18. For the following reaction $K_{\mathrm{c}}=1.0 \times 10^{-5}$ at $30^{\circ} \mathrm{C}$.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Which relationship is correct at equilibrium at this temperature?
A. The concentration of NO equals the concentration of NOCl.
B. The concentration of NOCl is double the concentration of Cl_{2}.
C. The concentration of NOCl is much greater than the concentration of Cl_{2}.
D. The concentration of NO is much greater than the concentration of NOCl.
19. The reaction below represents the Haber process for the industrial production of ammonia.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=-92 \mathrm{~kJ}
$$

The optimum conditions of temperature and pressure are chosen as a compromise between those that favour a high yield of ammonia and those that favour a fast rate of production. Economic considerations are also important.

Which statement is correct?
A. A higher temperature would ensure higher yield and a faster rate.
B. A lower pressure would ensure a higher yield at a lower cost.
C. A lower temperature would ensure a higher yield and a faster rate.
D. A higher pressure would ensure a higher yield at a higher cost.
20. Which is not a conjugate acid-base pair?
A. HNO_{3} and NO_{3}^{-}
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
D. HSO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$
21. Which $0.10 \mathrm{moldm}^{-3}$ solution would have the highest conductivity?
A. HCl
B. NH_{3}
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}$
22. The pH of a solution changes from $\mathrm{pH}=2$ to $\mathrm{pH}=5$. What happens to the concentration of the hydrogen ions during this pH change?
A. It decreases by a factor of 1000
B. It increases by a factor of 1000
C. It decreases by a factor of 100
D. It increases by a factor of 100
23. What happens to iodine when iodate ions, IO_{3}^{-}, are converted to iodine molecules, I_{2} ?
A. It undergoes reduction and its oxidation number changes from -1 to 0
B. It undergoes oxidation and its oxidation number changes from -1 to 0
C. It undergoes reduction and its oxidation number changes from +5 to 0
D. It undergoes oxidation and its oxidation number changes from +5 to 0
24. Consider the following reactions of three unknown metals X, Y and Z.

$$
\begin{aligned}
& 2 \mathrm{XNO}_{3}(\mathrm{aq})+\mathrm{Y}(\mathrm{~s}) \rightarrow 2 \mathrm{X}(\mathrm{~s})+\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
& \mathrm{Y}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Z}(\mathrm{~s}) \rightarrow \text { No reaction } \\
& 2 \mathrm{XNO}_{3}(\mathrm{aq})+\mathrm{Z}(\mathrm{~s}) \rightarrow 2 \mathrm{X}(\mathrm{~s})+\mathrm{Z}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
\end{aligned}
$$

What is the order of increasing reactivity of the metals (least reactive first)?
A. $\mathrm{X}<\mathrm{Y}<\mathrm{Z}$
B. $\mathrm{X}<\mathrm{Z}<\mathrm{Y}$
C. $\mathrm{Z}<\mathrm{Y}<\mathrm{X}$
D. $\mathrm{Y}<\mathrm{Z}<\mathrm{X}$
25. Which statement about the electrolysis of molten sodium chloride is correct?
A. A yellow-green gas would be produced at the negative electrode.
B. A silvery metal is produced at the positive electrode.
C. Chloride ions are attracted to the positive electrode and undergo oxidation.
D. Sodium ions are attracted to the negative electrode and undergo oxidation.
26. Which organic molecule is not a structural isomer of pentan-1-ol?
A. pentan-2-ol
B. 2-methylpentan-2-ol
C. 2-methylbutan-2-ol
D. pentan-3-ol
27. Which of the structures below is an aldehyde?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
28. What product is formed when $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ is reacted with acidified potassium dichromate(VI)?
A. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
29. Which type of reaction occurs when 2-iodo-2-methylpropane, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{I}$, reacts with aqueous sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$?
A. Addition
B. Free-radical substitution
C. $\mathrm{S}_{\mathrm{N}} 1$
D. $S_{N} 2$
30. A piece of metallic aluminium with a mass of 10.044 g was found to have a volume of $3.70 \mathrm{~cm}^{3}$. A student carried out the following calculation to determine the density.

$$
\text { Density }\left(\mathrm{g} \mathrm{~cm}^{-3}\right)=\frac{10.044}{3.70}
$$

What is the best value the student could report for the density of aluminium?
A. $\quad 2.715 \mathrm{~g} \mathrm{~cm}^{-3}$
B. $\quad 2.7 \mathrm{~g} \mathrm{~cm}^{-3}$
C. $\quad 2.71 \mathrm{~g} \mathrm{~cm}^{-3}$
D. $\quad 2.7146 \mathrm{~g} \mathrm{~cm}^{-3}$

